
NASA Contractor Report 195336 ?

A Model-Based Expert System for Space
Power Distribution Diagnostics

Todd M. Quinn and Richard E Schlegelmilch
NYMA, Inc.

Engineering Services Division
Brook Park, Ohio

(NASA-CR-195336) A MODEL-BASED

EXPERT SYSTEM FOR SPACE POWER

DISTRIBUTION DIAGNOSTICS Final

Report (NYMA) 23 p

N95-I1918

Unc|as

G3/61 0023898

September 1994

Prepared for
Lewis Research Center

Under Contract NAS3-27186

National Aeronautics and

Space Administration

Trade names or manufacturen' names are used in this report for identification

only. This usage does not constitute an official endorsen_nt, either expressed
or implied, by the National Aeronautics and Space Adminisw_on.

A MODEL-BASED EXPERT SYSTEM FOR SPACE POWER DISTRIBUTION DIAGNOSTICS

Todd Quinn and Richard Schlegelmilch

NYMA, Inc.

Engineering Services Division

Brook Park, Ohio 44142

SUMMARY

When engineers diagnose system failures, they often use models to confirm system operation. This concept has

produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert

system for a Space Station Freedom electrical power distribution test bed is currently being developed at the NASA

Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault

conditions.

Marple, a sottware package developed at TRW, provides a model-based environment utilizing constraint suspension.

Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the

mechanisms for applying this approach to analog systems as well, such as the test bed.

The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation

The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based

diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics

using constraint suspension within an analog system.

INTRODUCTION

As facilities designed for future spare exploration become larger, the associated environmental control systems

become more sophisticated and require significant monitoring for daffy operations. Autonomous systems are being

investigated and developed to help reduce facility operation and maintenance costs. Work at NASA Lewis has been

directed toward developing an autonomous electrical power management and distribution system. In such a system,

electrical energy is tramferred from power sources, such as solar arrays, through a conligurable network of distribution

lines to the various facility subsystems. The goal oftbe autonomous power management and distribution project is to

provide an integrated environment for load and resource scheduling, system health monitoring, fault determination, and

fault recovery.

The block diagram in figure 1 (from ref. 1) shows the autonomous power distribution system comprising three basic

components: the distribution network, expert system, and power resource scheduler. The distribution network consists of

power lwausmission lines routed through a collection of switching devices that are controlled by a microprocessor-based

power controller. A knowledge-based expert system monitors the distribution network and performs fault detection,

isolation, and recovery operations. The expert system also controls the configuration of the distribution network based on

predetermined load profile information (i.e., power consumption) and activity start times provided by the power resource

scheduler.

Two power distribution test beds have been built at NASA l__wis. One test bed, referred to as the brassboard, was

built to demonstrate the potential use of expert systems and to investigate real-time hardware interaction. The brassboard

represents a power distribution unit subsystem of an early space station 20-kHz ac power design. The second test bed,

shown schematically in figure 2, is the prototype system currently being developed for space station power. Instead of

using ac, the space station test bed is designed for dc power transmission Both test beds contain sophisticated switching

devices to control the flow of power from sources, through a network of transmission lines, to the loads. There are

basically two types of swiWkdng devices: remote bus isolators (RBI's) and remote power controllers (RPC's). RBI's are

designed to operate at higher voltages and currents than the RPC's and are used for the primary distribution of power.

RPC's are used on a secondary distribution level, closer to the loads where the voltage and current requirements are

lower. The RBI's and RPC's are remotely monitored and controlled by a microprocessor-based controller via a 1553

data bus _TD-1553B). Data communication over the data bus includes reading voltage, current, and status

information from built-in sensors on the switching devices. Each test bed contains components that convert primary

voltage down to a secondary level. On the brassboard, transformers are used to convert ac to dc; on the dc space station

test bed, dc-to-dc converter units (DDCU) are usecL Also on the space station test bed, battery charge/discharge units

(BCDU's) regulate the storage and use of electrical energy, and a solar switching unit (SSU) conditions and regulates

power generated by the solar arrays.

Sources

I Switch Control

Expert i_ta goqu.ts _"System _'_

_. Sensor Data

Load Profi_---_Activity

Informafio_ _Slart Times

Power
Resource
Scheduler

DislribuUon
Network

Power

Conlroliar

I
1553 Data

Bus

Switching Devices
and Sensors

Power Lines

Figure 1.-Autonomous power distribution system (from ref. 1).

Referring to figure 1, the expert system primarily directs the autonomous operation of the power distribution

network. Requests for data are sent to the microprocessor-based power controller. The power controller acquires sensor

data from each switching device and passes the information to the extmzt system where the data are checked to verify

nominal operation of the power distribution system. If the sensor values indicate an inconsistent or une_

operational state, then a probable fault determination phase is initiated. After the expert system has isolated the probable

cause, fault recovery procedures are generated. Initial fault recovery procedures determine if the fault can be tolerated for

a period of time, if the power distribution can be reconfigured, or if load shedding is necessary. For reconfiguralion and

2

DOCU 1 DDCU 2

m

Primary
Dislribulion

DOCU3

Secondary

Di$1ribu0on

Figure 2.-Space station dc power distribution network.

load shedding,the expertsystem can automaticallyissueswitch-controlcommands tothepower controllertoopen and

close the switching devices.

The expert system also interacts with a power resource scheduler (ref. 1). Since electrical power is a limited

resource on a space-based facility, efficient allocation of power is paramount. A profile of expected power usage (i.e.,

power versus time) for each load is entea'ed into the expert system through a load managemem user interface. This load

profile information is passed to the power resource scheduler, which then schedules the start times of activities to make

the most efficient use of available power. The exixm system can open and close switching devices to redistribute power

• at the scheduled times by issuing switch-control commands.

To have an autonomous electrical power distribution system, one which requires liUle human supervision, the

diagnostic capabilities of the expert system must be able to handle unexpected situations. The initial expert system,

known as the autonomous power expert or APEX, was developed for the 20-kHz ac brassboard. APEX consisted of rnle-

based fault detection, isolation, and recovery. Diagnostic rules that associate symptoms with faults were developed from

the experience and knowledge of the brassboard engineer. These rules encoded the a priori fault situations identified by

the engineers, but the diagnostics were limited to only those situations. For fault recovery, we developed a set of rules

that relied on the configuration (structure) of the brassboard and the nature of the identified fault_ These fault recovery

rules provided a broad range of recovery tm3cedtnes without enumerating every possibility for each fault condition.

Since knowledge of the brassboard configuration and a few rules about the nature of power distribution fault conditions

provided a very flexible fault recovery system, the idea of using slxu_ and behavioral knowledge for diagnostics

became very appealing.

The _ expert system was implemented on a Texas Instruments Explorer II workstation (Texas Instruments,

Houston, TX) in Lisp and employed the Knowledge Engineering Enviroment, or KEE 0ntelliCorp, Inc., Mountain

View, CA) expert system shell. To explore the application of model-based diagnostics to electrical power distribution,

we decided to use a software package developed by TRW known as Marple (ref. 2). Marple provides a flexible

environment for defining behavioral models of system components and for specifying component interconnections that

the system comprises. When first acquired, Marple was running in Lisp on Texas lnsmmaents Explorer workstations.

We eventually ported Marple to Lucid Common Lisp (Lucid, Inc., Menlo Park, CA) running on a Sun Spare-2

Workstation (Sun Microsystems, Inc., Mountain View, CA) and have directed our modeling efforts toward the de test

beck To monitor and expea'iment with the execution of Marple, we have developed a Marple inspector user interface that

allows us to examine the internal state values of a model as Marple is running.

This report discusses our current experience with model-based diagnostics and our attempt to apply it to the de power

distribution test bed at NASA Lewis.

MODELING

Many diagnostic paradigms are based on various modeling techniques. Typically, behavioral characteristics are the

sole basis of system models, such as in fault and event modeling. Fault models capture knowledge regarding the

misbehavior of a system's component_ These models incorporate knowledge related to the behavior of a component

when it begins to malfunclion (ref. 3). Event models described how one event affects another event while knowledge

about component structure is absent. However, useful knowledge can be obtained by exploiting the smacture of the

system being modelecL Anotlmr diagnostic paradigm, as presented in this report, models the correct behavior of system

components and explicitly contains a representation of the system's structure. By following Davis' diagnostic reasoning

teclmiques based on structure and behavior (refs. 4 and 5), a system failure is simply defined as any discrepancy between

the model and the system under test-

4

Stnlctu_

System structureisde_ribed by Davis asthe interconneetionofsystem elements. The structureinformationcan be

organized in different ways. Two schemes that are ideal for troubleshot)ling include the functional and physical

descriptions (ref. 4). A functional organization describes how different components interact; a physical organization

describes how devices are actually connected. The main focus of our current work is the functional struct_e of the

power distribution test bed as shown in figure 2.

The test bed componem models incorporate the following concepts: module, terminals, and sensors. The module of

a component contains a description of the component's behavior. This description is constructed by looking at the

component as a black box representation and by using transformation functions to define the relationships between the

inputs and outputs. Terminals are the connection points of a component and consist of two nodes that represent voltage

and current at that tea-minal. Each component model has at least one input or output terminal. Sensors, or observation

points, are placed at nodes associated with actual system voltage and current measurements. A library that contains a

functional description for each component used in the dc test bed was assembled. The functional characteristics of each

component listed in table I are described in the following subsections.

_K.alXa.Y.-The solar array is the main source of power for the sys_m. It contains a total of 82 strings of solar cells

and supplies a current of up to 200 A when operating at 160 Vdc. The solar array component model has a single output

terminal and no sensors are available at the nodes. The number of active solar cell strings is programmatically con_olled.

TABLE L--COMPONENT LIST

Component name Component type

Solar Array

SSU

Battery

BCDU

DDCU

Solar array

Solar switching unit

Battery

Battery charge/discharge unit

Dc-to-de converter unit

RBI/RPC

Load

T-Line

D-Line

RemotebusisolatorI

remotepowerconlroller

Resistiveload

Transmissionline

Distributionline,a brat_bedT-Line

Solar switchine tmit.-The solar switching unit (SSU) takes as input a voltage in the range of 0 to 220 Vdc and

outputs a user selectable voltage between 135 and 175 Vdc. The SSU component model has one input terminal and one
output terminal. Sensors are located at all nodes.

l_Ig_.-The battery, when in the charge mode, draws all available power from the battery charge/discharge unit to

recharge itself. When in the discharge mode, the battery supplies the power distribution system with a voltage and

current from its available reserves. The battery component model has one terminal acting as both input and output

corresponding to the charge and discharge modes. No sensors are available at the nodes of the battery.

Battery_ charge/di_har_e unit-The battery charge/discharge unit (BCDU) supplies the battery with a voltage

between 90 and 130 Vde and a current of up to 10 A when in charge mode. In discharge mode, the BCDU supplies the

power distribution system with a voltage in the range of 120 to 157 Vdc and a current of up to 65 A. The BCDU
component model has one input _ and one output terminal. Sensors are located at all nodes.

I)e-to-dc converter unit_-The tic-to-tic converter unit (DDCU) takes as input a voltage between 125 and 175 Vdc and

outputs a user selectable voltage in the range of 120 to 138 Vdc. It is designed for a nominal output of 12.5 kW of power

with a peak efficiency of 91 percent. The DDCU component model has one input terminal and one output terminal.

Sensors are located at all nodes.

Remote bus isolator/remote _ower con_roller.-Tbe remote bus isolator (RBI) and remote power controller (RPC) are

switching devices that act like circuit breakers when an overcurrent condition is detected. These switching device

component models have two terminals: one input and one output. Sensors are located at the input and output voltage

nodes and at the output current node.

PM_liv¢, hH_-The load represents a device that consumes power. Currently, only a simple resistive model is used

to characterize the load. The load component model has only one input terminal. No sensors are available at the nodes of
the load.

T,l'&ll_a_,_lllillg.-Thetransmissionline(T-Line)component isused tomodel theresistanceinpower transmission

lines comprising the power distribution network and also allows line failui_ to be simulated and detected. Transmission

line failures include short circuits, open circuits, and changes in line resistance. The T-Line component model has one

input terminal and one output terminal. No sensors are available at the nodes of the T-Line.

_Qall_2Bj_.-The distribution line (D-Line) component is used to model the current splitting that occurs when

the inputs of multiple components are connected to the same output terminal of another component. The D-Line

component model has one input terminal and two output terminals} No sensors are located at the nodes of the D-Line.

Behavior

Behavior describes how information leaving a component is related to the information that entered it (ref. 4). Marple

describes the behavior of a component by using two types of transformation functions: simulation and inference. The

simulation functions represent the actual flow of information from a component's inputs to its outputs. The inference

functions represent the flow of inference or the conclusions that can be made regarding a particular component's inputs

based on the componem's output values (ref. 4). Marple refers to simulation functions as forward constraints and the

inference functions as reverse constraints (ref. 2). Each component's behavior is defined using electric-circuit theory,

incorporating concepts such as Ohm's law and conservation of power. A typical set of constraints is shown in table II.

Defining an analog model is complicated when the behavior of the component changes with respect to time, when

the forward constraints are not invertible, or when inversion does not produce unique solutions (ref. 2). The battery was

such a component: difficult to model, because its characteristics changed with respect to lime.

lit is important to note that when more than two loads are connected to a single output, multiple dislribution lines are required.
This distribution line structure was chosen because of its simplicity. However, there are drawbacks to the simplicity. For N outputs,
N-1 distribution is required with 2*N calculations per node for simulation. This modeling scheme becomes unfeasible for a large
number of ouputs due to increased processing lime; however, the current model is small enough that the additional processing time is
negligible.

6

TABLEH.-CONSTRAINTS FOR THE TRANSMISSION-LINE COMPONENT

Forward Reverse

Io_=r_ I_=Io_

Vo_ = Vm - (Ira *R) Vm= Vo= + 0ore * R)

A typical battery can be modeled as an ideal voltage source in series with a small resistance. Using this assumption

implies that the output voltage is dependent on the circuitry attached to the battery. However, both the ideal voltage

source and resistance are dependent on the battery's state of charge, which changes with respect to time. Currently, the

battery state of charge with respect to time is unavailable and is difficult to estimate. Therefore, we made the assumption

that the state of charge remains constant with respect to time. Although far from ideal, this assumption is sutticient for

the calculations required. Thus, the open ciroxit voltage and resistance remain constant, resulting in a simplified model.

DIAGNOSIS

Model-based diagnosis is fundamentally based on the notion that if the model is correct, all discrepancies between

observation (data measurement) and prediction (simulated values) can be am-ibuted to defects in the physical system

(ref. 3). The goal is to determine which component in the system could have failed to account for all discrepancies. The

first step of diagnosis is to generate a candidate list of possible faulty components. Then heuristic methods are used to

determine which component, or components, are actually responsible. Hypothesis testing within Marple uses constraint

suspension to determine if a malfunction of any given compoaent could create the observed state.

To determine Marple's diagnostic capabilities, several data sets r_nting various faults were introduced to the

component network. Marple was above 75 percent accurate in determining the mistmhaving component, given the

various induced faults. The types of faults investigated included sensor, switching-device, and transmission-line faults.

Since sensor data are propagated through the model, it is important that measurements are accurate and reflect the

current operating state of the system. Invalid sensor values may produce unexpected discrepancies within the model and

result in a misdiagnosis. A discrepancy is defined as a condition where an observed value is inconsistent with the

corresponding propagated model values. Sensor faults are introduced into the system by modifying a single data value
within the data set_

As described earlier, the test bed switching devices contain sophisticated control and data acquisition logic. Three

types of switch faults were investigated: stuck-on, stuck-off, and high-impedance faults. A switching device that is stuck-

on or stuck-offis characterized by the switch either being dosed when it should be open or vice versa. These faults were

easily imxoduced into the system by physically commanding the switching device to be either on or off and setting the

corresponding model instance to the opposite value. The third type of switching fault is a high-impendence fault.

Normally, a switch has a small resistance that is typically neglected. However, when this resistance is not negligible

(e.g., when arcing creates a carbon buildup and an increased resistance), a high-impedance fault exists. This type of fault

is characterized by an excess voltage drop across the switch. High-imtxxlance symptoms were introduced within the data

set by adjusting the voltage and current data downstream of the suspect component.

Another type of fault concerns transmission line leakage paths. This type of fault is very tmpredictable and therefore

a good test of the Marple system. A leakage-path fault is characterized by a transmission line with a resistance path to

ground. This type of fault occurs when there is a break in the cable shielding or when an induction loop exists. This fault

is introduced within the data set by adjusting the current data of all components downstream of the affected transmission
line.

MARPLE

Marple is a model-based reasoning system designed by the TRW Space & Technology Group's Eugineering and

Test Division (ref. 6). The Marple system utilizes a version of constraint suspension modified for use with analog device

models. This technique models all known relationships between sensor data and, using an internal model of the system,

monitors the consistency of the data (ref. 2). The Marple system expects as input a network of components, their input

and output nodes, and the constraints that represem their functionality. Marple assembles this information into a
constraint-based model.

Constraint calculations are initiated by placing data at the different sensors. A sensor value can be thought of as the

beginning of new paths radiating from those _ containing sensors, and the terminator of any other paths entering that

node (ref. 2). Processing continues until all applicable associations between the pieces of sensor data are examin_

Analog values are used in propagation until a sensor value is reached, then the sensor value is propagated. If all node
values agree, Marple requests a new data set However, ff an inconsistency is encountered, Marple lXocedures analyze

the network components by suspending constraints on the suspect component or components (ref. 2). MarpIe continues

testing until one component can account for all network discrepancies. Once a componem is suspect and its substructure

defined, Marple will Ixoceed into the substructure to further isolate the fault, ff possible.

Since multiple, indepeaxlent values can be placed at a given node, comparing these values for inconsistencies is

achieved by using a procedure defined as a precision function The precision function tests ff values placed at a node are

within tolerance. This tolerance is specified as a percentage of error or as a predetermined range.

Given certain observed discrepancies, multiple components may be suspect. In Marple, this is designated as a

superstructure. A superstructure is defined as a set of components whose individual diagnosis cannot be distinguished

(L. Fesq and L. McNamee, 1993, TRW, Redondo Beach, California, to be published). That is, whenever one member of

a superstructure fails, other members may also be suspected. Fesq and McNamee explain how Marple recognizes

superstrucUnv_.

FAULT DIAGNOSTIC EXAMPLE

The following is an example of fault diagnostics using the model-based constraint suspension approach of Marple.

For this fault example, switchin___gdevice RBI 7 of the space station de power distribution network (shown in fig. 2) has

been commanded to open, but the switch remains closed. Figure 3 shows the modeled components and their

interconnections around the RBI 7 switching device. Each RBI component has five nodes labeled Vin, Iin, Vout, lout, and
on-off. Built-in sensors are located at the Via, Vout, and Ioutno_s, as depicted in figure 3 by the double boxes. These
sensor nodes are assigned data values that w_re acquired from the actual hardware.

Thebehavioralaspectsof RBI's are modeled by the following state variable and constraints:

State variable: device-on t = switch is dosed (on)

nil = switch is opened (off)

Forward constraints: If device-on, then
V,_ - Via - (Ii_ * R)
lout = Iia
on-off= on

EIse

Vout = 0

Io_=0
on-off = off

where R is the resistance across the switch

Reverse constraints: If device-on, then

Via = V_ + (Io_t *R)
Iia-- Io_

Else Ii_ = 0

where R is the resistance across the switch

IfI_, then
on-of_---- on

Else
on-off = off

The behavioral aspects of distribution lines are modeled by the following simple constraints:

Forward constraints: Vlout = Via
V2o_ = Via

Ilout = Iia - I2o_t

I2out = lia - Ilout

Reverse constraints: Via = Vlout
Via = V2out
It. = Ilo_t + I2om

Marple first reads the sensor data from the hardware and applies the values to the appropriate sensor nodes in the

model. The acquired sensor values are propagated through the model in forward and reverse directions. These values are

directly transferred across connection lines to other nodes. The forward constraints then transform forward input values

into corresponding output values, whereas the reverse constr_ts determine appropriate input node values based on

output nodes. For instance, lout sensor data for both RBI 8 and RBI 9 are equal to 35.2 A (see fig. 3) and both are

propagated in the reverse direction to their respective Iin RBI nodes by the reverse constraint oflin = lout. The 35.2 A

values are propagated across the respective node connections to the Ilout and 1.2out nodes of distribution line 12. The

reverse constraint of Iin= I1out + I2out for distribution fines will produce a reverse propagated value of 70.4 A at the Im
node of distribution line 12.

Once sensor values have been propagated, each node in the mode/has an associated forward and reverse vulue. At

each node, these values are checked for consistency via a precision function. Precision functions can be any function that

returns a state value, either "t" (meaning consistent) or "nil" (meaning inconsistent). Typically, the precision function

compares the largest difference of the three values (sensor, forward, and reverse) to some prestxxfified percentage limit.
If the system being monitored is functioning as represent_ by the model, then under normal operating conditions no

discrepancies will be found.

9

F forward propagated value

R reverse propagated value

S sensor data value

'C" node values conflict

-.. I
propagation_

To RBI 5

T
F = 126.8
R = 126.8

F= on
= on

R=70.4 C
S = 126.8

F = 126.8

1_=7o4C

,utl 1120utlF=S64
--, =_;.=:J R = O " C

JIl

To DDCU 1

:_,_c I_,

J I1,,,
F=91.6
R = 35.2 C
S = 35.2

_RBI 8

To ODCU 2

i F=56.4

F.,_o %1-i;--I,.oCS= 150

H = on

C S= 150 II R=56.4C

R= 150 _ S=56.4

F=91.6 C
R = 35.2

_F =on

_R = on

J
F=91.6
R=35.2 C
S= 35.2

To DOCU 3

Figure 3.-Partial model representation of the dc test bed.

10

In this fault example, discrepancies occur when RBI 7 is commanded to open but fails to do so. Vvrhen RBI 7 is sent

a command to open, its state variable labeled device-on in the component model is set to nil represeming an off state. In

this case, the forward constraints defined for RBI's set values for RBI 7 nodes Vou t, lout, and on-offto 0, 0, and off,

respectively. However, since RBI 7 actually remains dosed, sensor and reverse values for nodes Vout and lout of RBI 7

are 150 Vdc and 56.4 A, respectively. Also since an lout current is present at RBI 7, the reverse conslraint for RBI's sets

the reverse value for the RBI 7 on-off node to on. A set of inconsistent node values at RBI 7 is produced as shown in

figure 3. This example also shows that a fault can produce inconsistent node values throughout the model, such as at

other RBI's and the distribution lines.

When one or more discrepancies is encountered, Marple generates a candidate list of suspect model components.

These candidates form a list of hypotheses regarding the candidate' s misbehavior as an explanation for all discrepancies.

Each hypothesis is tested by suspending the candidate's constraints and checking to see if all node value conflicts

throughout the model have been eliminated. If no discrepancies remain when a component is suspended, then the

hypoflmsis is accepted and the component is identified as a probable source of the system failure. In this example, the

candidate list consists of the components with conflicting nodes: RBI 6, RBI 7, RBI 8, RBI 9, distribution line 4, and
distribution line 12.

The farst candidate suspended by Marple is RBI 7. When RBI 7 is _azspendecl, the constraints defining the switching

device behavior no longer calculate forward and reverse values for the respective output and input nodes. Also no values

are assigned for RBI 7's on-off node. Since no reverse value for RBI 7 Iin node is generated, there will be no reverse

value propagated to the I2ou t node of distribution line 4. With no reverse value at the I2ou t node, distribution line 4 cannot

calculate a reverse value for node Iin and cannot produce a forward value for 1lout. Forward values will not be

propagated to distribution line 12, RBI 8, or RBI 9. At the same time, no reverse value will be propagated up to RBI 6.

Therefore when RBI 7 is suspended, all node discrepancies are removed from the system and RBI 7 is accepted as a

possible faulty component. At this point, Marple recognizes that a superstructttre exists containing components RBI 7,

RBI 8, RBI 9, distribution line 4, and distribution line 12. The superstructure results from sensor placement and the bus-

like connection of components; the other components are also potentially the actual cause of the fault instead of RBI 7.

Marple therefore has to individually suspend each of the other components in the superstructure to test the hypothesis

that they could also be a probable cause. If a component is suspended and inconsistencies still remain in the model, then

the component is rejected as a probable eause. I/otber suspended superstructttre components eliminate all discrepancies,

then they are added to the list of possible faulty components. In this case, Marple is not able to isolate the faulty

behavior to an individual component but rather compiles a group of possible components.

As each component in the supers_etnre is tested, tim associated constraints are suspended and as with the

suspension of RBI 7, the forward and revea'se values will not ge_ propagated among the model components in

figure 3. All conflicting node values will again disappear except one. The on-offnode at RBI 7 will have its forward

value set to off since the switch was commanded to open. However, because there is current measured at the sensor node

lout of RBI 7, the reverse value for the on-off node is equal to on No matter what other component is suspended, there

will always be this discrepancy. All other candidates will be rejected as possible faulty components, which leaves RBI 7

as the only possible candidate.

LESSONS LEARNED

Many of the lessons learned throughout this project were first encountered during the earlier work on the 20-kHz test

bed. The first lesson learned about using the constraint suspension model-based approach to expert system diagnostics

was the importance of a relevant_ or "good", model. Two particular areas were noted where mismatch bevween the model

11

and the system under test contributes to misdiagnosis of a fault. The first problem occttrs when the fault creates a new,

unexpected connection between components intherealsystem. The second problem easilyoccurswhen the constraints

of a component do not realistically match the behavior of the component.

An example of the first problem was encountered when a fault reptesenling a current leakage path between a power

distribution line and ground was inserted into the system. Under normal operating conditions of the power distribution

system, no pathsbetween the power linesand ground existand thereforeno such connection was inthe model. Once the

currentleakage path was introduced,themodel no long_rrepresentedthe system under test.The model was incapableof

diagnosing thiskind of faultbecause themodel did notcontainfilebehavior thatzero currentshould pass between a

power distributionlineand ground. Since faultsofthisnaturemay occur inpower distributionsystems,a solutionis

currentlybeing triedthatmodels leakagepath-to-groundcomponents with an expected behavior ofhaving zero current.

The second problem experienced with misdiagnosis was caused by an incorrect model constraint for the load

components of the system. The loads used on the 20-kHz power distribution test bed were banks of lamps. One of the

constraints for the loads modeled the relationship between fiae current and voltage using a constant resistance in the

equation V = IR. However, the resistance behavior of the lamps was actually dependent on the applied voltage. When a

partial drop of power at the source produced a fault in the system, both the source and load experienced constraint

violations. The constraint violation at the load, however, was produced by the inaccurate model, which was based on a

constant R instead of the variable resistance of the lamp. Suspending constraints of the source component did not remove

the constraint violations at the load since the behavior of the load was not properly modeled. The constraint violation at

the load would not have been created if a proper model had been used. Then when the source comUaints were

suspended, no otherviolationswould existand thepower sourcecomponent would have been idenlifiedasthe probable

cause ofthe fault.

The next lesson learned has to do with propagated values. Each model componem has a set of input and output

nodes and constraints that determine the relationship between these nodes. The cons_aints are divided into two

categories: forward constraints and reverse constraints. The forward constraints define the transformation of input values

across the component to output values and the reverse constraints relate the outputs to inputs. The values at the nodes of

a component are propagated to llae otherconnected components inthemodel. Some nodes within the model are

designated to receive sensor data that are then propagated across component constraints and the interconnections bexween

components in both the forward and reverse directions. Generally, the values of sensors located upstream in the model

arc propagated in the forward direction and values of sensors located downstream are propagated in the reverse direction

When a discrepancy between a forward propagamd value and a reverse propagated value occur at a node, one of the

component' s cons_aints is considered to be violated.

Since sensor data inherently is accompanied with a certain amount of noise, individual sensor values may be well

within expected tolerance used to accommodate the noise. However, as values are propagated, the constraints begin to

combine (i.e., add or multiple) values from various sensors. We have encountered situations where the difference

between reverseand forward propagated valuesgo outsidethe toleranceallowance fora given node, thereforeindicating

a co_t violation. The tolcsance range allowed at a node directly affects the fault detection sensitivity of the model.

The effect of node tolerances needs to be studied more to determine the optimal use of node tolerance for maximum fault

detection with no misdetection or misdiagnosis of faults.

Another problem associated with constraint models and file propagation of values is the occurrence of propagation

blockage due to loops or cycles involved with multiple components. Consider two components, where an output of the

first component is connected to an input of the second and an output of the second component cycles back to an input of

the first. In this case, the output of the first component is dependent on the feedback output of the second component, and

the feedback output of the second component is constrained by the output value of the first component. Since the output

of the first component is needed to calculate the feedback output of the second component and the feedback output of the

12

second component is needed to calculate the output of the first component, neither value can be calculated and
propagation is blocked.

This situation was encountered when leakage-path components with zero current behavior were added between the

power distribution line components and a grounded component in the 20-kI-Iz model. The grounded component was

directly upstream of one of the transmission lines where the leakage path was added. The leakage path from that

transmission line to the grounded component then formed a cyclic propagation block Further study of these cyclic

conditions are needed to determine a modeling approach to avoid such propagation blocks.

Although the model-based approach provides broad fault coverage capabilities, it is unlikely every possible fault can

be handled by this one paradigm. For all modeling systems, the effectiveness of fault detection and diagnostics depends

on the "correctness" quality of the model. For instances that are not easily modeled, such as extra unanticipated

connections between components, cyclic feedback paths, or an incomplete understanding of the component behavior, the

infusion of rules into the model may prove to be valuable. Rules may help recognize when a particular fault diagnosis

may be in error, or explain why the expert system cannot identify the faulty component. Rules may also be useful in

providing mote specific information about the faulty component, once identified. If a nile can determine how the

component is faulty, this information may be used to identify the appropriate repair procedures.

The primary knowledge of model-based expe_ systems is the interconnections and behavior of the various

components. Fault hypotheses are generated and tested methodically, based on a few simple heuristics. Sometimes a

human expert can rule out hypotheses based on his or her experience. As time progresses and experience is accumulated,
the ability to integrate that experience with the model makes the human expert more efficient daring problem solving

tasks. If the model-based expert system could retain knowledge from past experiences, its fault diagnosis abilities could

also be enhancecL Through machine learning, the model-based expert system could develop rules from past experiences

that could then be applied during future fault diagnostic tasks.

USER INTERFACE

Deign and development of the Marple user interface for the power distribution project at NASA Lewis had two

components; each addressed different aspects of working with Marple. Marple was developed as a software shell for
developing diagnostic systems. The user interface provided to us by TRW was designed to demonstrate end user

operation of such a system. Since our first task was to build a diagnostic system for power distribution, a user interface

was needed for developing and running models within the Marple shell. In order to evaluate the design and effectiveness

of the application models, the user intea'face had to supply easy access to the various and complex model representations

within Marple. Once the models for the application have been developed, the second aspect of the Marple user interfar.e

concerns the end-user operation. Here the user interface must satisfy the user's need to monitor the operation of the

power distribution system.

The user interface built for Marple model development is called the Marple Inspector. One of the primary feam_res of

this interface is to have the graphical display of the model structttte generated _tomalically from the internal Marple

model representation. Thus any change in the model structure, such as the addition or deletion of a component, will be

automatically reflected in the Marple Inspector display. The structure of a system is represented in the Marple model as

the interconnections between input and output nodes of the components that comprise the system. The graphical display

consists of a tree-like structure where each output node connection is displayed as a circle and a connecting line

originating at the bottom. Figure 4 shows a small section of the connection tree for the space station dc test bed model.

13

Figure 4.-Dc test bed connection graph.

Each circle represents all the input nodes and a single output node of a component. Component input nodes arc

graphically represented at the top of a circle in the display; the single output of a circle is connected to an input of a circle

that is below. As shown in figure 4, one of the circles labeled Rl_ 1 has two inputs and one output. The inputs are from

two separate connection graph nodes of the component Dist Line A. The output of the RPC 1 circle connects to the

circle, Load 1. The_e are two circles labeled RPC 1 because there arc two output nodes in the Marple model. One circle

represents the output voltage of switching device RtPC 1, while the other circle represents the respective output current_

Although each of these circles have different outputs, they have the same input connections. A short "T'" symbol is

placed at the top of one of the ILPC 1 circles. The T-top indicates that the circle's inputs are the same as anotl_

14

associated circle with the same label. This is done to eliminate the need to redraw upper portions of the connection tree

over and over again. For instance, the upper portion of the connection tree above the circle labeled Dist Line A is very
large and there are three more circles with that same label. Since each of these other circles have the same inputs, the
upper portion of the connection tree would have to be drawn above each. Also note that in the upper portion of the
connection tree, there are yet more associated circles that would have to be repetitively drawn. This would cause an

explosive growth in the display of a connection tree.

The Marple Inspector is designed to give the user acc,ess to information about the content of a Marple model and the

•operational status as the model is being used. Figure 5 shows the screen layout of the Marple Inspector, which is divided
into six sections:

Connection Graph Display Area

Command Menu

Information Display

Status Display

Color Association Directory

Mouse Infomlation Display Area

As discussed previously, the connection graph is the strucatml graphical display of the current model within Marple.

Each of the connection graph nodes is mouse sensitive; when the mouse pointer is moved onto one of the circles, the

circle is highlight with a square box. At the same time, data pertaining to the highlighted node are displayed in the mouse
information display are_ These data inform the user which component the node represents, what the output node name

is, and which input node and component is the destination of the connection. For example, when the mouse pointer is

placed on one of the nodes labeled RI_ 1, the mouse display area reports "Connection: (RPC- 1.V-OUT to LOAD- 1.V-

IN)." When placed on the other node labeled RPC 1 the display area reports "Connection: (RPC- 1.I-OUT to
LOAD- 1,I-IND."

If the user clicks the left mouse button when a node is highlighted, a menu of various information display options is

displayed. The items selectable in the menu are

Redisplay graph from this node

Display connection values

Display node values

Display associated inputs

The redisplay graph from this node command allows the user to display the portion of the graph consisting of the

highlighted node and all nodes above. The connection graph is always sized to fit in the connection graph display area,

with circle radius and spacing between nodes automatically adjusted. By displaying a smaller portion of the entire graph,

the nodes are drawn larger such that the labels can be read easier, spacing between nodes is increased, and the user can

concentrate on a particular area of interest. Once a portion of a connection graph is redisplayed, a node from the new

display can also be selected to initiate the redisplay graph from this node command to further focus the display of
connection nodes.

15

CONNECT/ON GRAPHa(DC_Testbed)Mrplelnspector COMMAND MENU

7t_ _ | Comp#o and Load Model
'_ y I CtearStatus

I
Y I ShowGr_oh

, _: I RestoreGraph
_1 I Reset Graph

I
I

_ _ _ _ _ I _ Behavior

* w is white, y is yellow, b is blue, and r is red

Figure 5.-Marple inspector screen layout

The second command available from the menu is display connection values, which presents current internal Marple

data in the information display area When selected, the Marple Inspector displays the three values (i.e., sensor, reverse

propagated, and forward l_upagated) associated with the single output of the connection node. Also displayed are the

respective three values at the input connection of the destination connection tree node. Figure 6 shows the information

display of connection values for one of the nodes labeled RPC 1. Each line of information may be selected with the
mouse. If the user clicks the mouse button on one of these lines, further information about the internal source of the

generated data is presented to the user as shown in figure 7.

The menu option, display node values, allows the user to see the Marple internal data of all the input/output values

associated with a component partially represented by the selected connection tree node. Figure 8 shows data values for

all input and output nodes pertaining to component RPC 1. When the display associated inputs option of the menu is

used on a connection tree node with a T-top, a line is drawn from the T-top to the associated node that actually contains

the comaections from the upper level nodes.

16

Source: RPC-I s-vals r-vals f-vals

...

V-OUT 112.0373 112.0005 120.0027

Deer : Load-I e-vale r-vale f-vale

...

V-IN NIL 112 .0005 112 .0373

Figure 6.-Information display of connection values.

V-OUT-2089 of RPC-I

s-val: 112.0373 from RPCI-V-OUT-SENS

r-val: 112.0005 from (LOAD-I . V-IN)

f-val: 120.0027 from RBI-V-OUT-FWD-CONS-2095

Figure Z-Data value source references.

Node values for RPC-I s-vals r-vals f-vals

..

V-IN 120.04 112.0746 120.04

I-IN NIL 7.4667 7.4667

V-OUT 112.0373 112.0005 120.0027

I-OUT 7.4667 7.4692 7.4667

ON-OFF NIL ON ON

Figure 8.-Data values for the input and output nodes of RPC 1.

As the Marple software is executing, many internal changes to the model take place. To quickly identify areas of the

model being evaluated by Marple, four colors have been chosen to highlight nodes that comprise the connection graph

and the associated text in both the information display and status windows. A color association chart is displayed under

the command menu indicating the meaning of various colors that appear on the screen. Nodes colored grayish-white in

the connection graph represent components that are behaving normally at present. If data conflicts or constraint

violations are present, the corresponding connection graph node is colored yellow. Associated text is also displayed in

17

yellow to help indicate the sources of the violations. When a component is suspended during the fault diagnostic phase of

Marple, the corresponding connection graph nodes are colored a light blue. When Marple identifies a suspect component

or set of components, the corresponding nodes are colored a bright red. Text indicating the suspected faulty component is

also displayed in red.

The command menu, as shown in the screen layout of figure 5, provides the user with the ability to control the

operation of Marple. The following subsection provides a short description of each command found in the command

menu.

_ Model.-The load model command allows the user to select a model and load it into the working environment

of Marple. Only the compiled, binary version of the model's files are loaded. If any changes have been made to the
model source files and are to be loaded into the Marple environment, then the Compile and Load Model command should

be used. Once the model has been loaded into Marple, the internally generated connection graph is displayed

automatically.

Comnile and Load ModeL-The compile and load model command allows the user to select a model, compile the

source files into binary form and then load them into the working environment of MarpIe. Once the model has been

loaded into Marple, the internally generated comaeclion graph is displayed automatically.

O_ Smtus.-The clear status command dears the status window of any text, including text that has scrolled offtbe
window.

_-A script is a coded procedure for generating system sensor data to be used by Marple. Currently, dam

values representing the operational sensor status of a system are stored in ASCII files. The statements within a script

indicate which files are to be accessed, the number of times a particular file should be read, and the order in which the

files are processed. After reading a data file, a script statement can be used to alter any data by a specified value (either

positive or negative) before it is passed to Marple. This mechanism permits a fault scenerio to be generated from a single

file representing the "good" operational sensor status of a system by changing the values of appropriate sensor values.
The select script command provides the user with a menu of available scripts associated with the currently loaded model.

Ihm/Pauselrea-minate.-The run, pause, and terminate commands control the process execution of the Marple

software. After a model has been loaded and a script selected, the run command can be invoked to create a Marple

process. Execution of the Marple process can be suspended or paused by the pause command. When the user selects

pause, the Marple process is not suspended immediately; the process is put on bold after Marple has finished propagating

sensor values throughout the model. _ Marple pauses, the user can query the connection tree by using the mouse to

look at the current internal data values within the model. The user can then continue execution of Marple by selecting

pause one more time. The terminate command kills the Marple process; all execution is stoIVect When Marple is started

again by the run command, the selected script file starts from the beginning. The status of the Marple process (i.e.,

stopped, paused, or working) is displayed in parenthesis within the title bar of the status window as shown in figure 5.

Mode.-The mode command allows the user to switch from the connection graph display of the Marple internal

model representation to a higher level block diagram of the system. The block diagram displayed for the dc test bed is

similar to the diagram shown in figure 2. When the connection graph is displayed, the Marple intetTace is said to be in

inspector mode. The block diagram mode is referred to as the user mode since it is a more intuitive description of the

system for most users. The selected mode (i.e., inspector mode or user mode) is indicated in the command menu window

just below the exit command as shown in figure 5. The mode indicator is delimited by a set of dashes and cannot be
selected with the mouse. All commands above the mode indicator are available in both modes, but the commands below

the mode indicator are associated with the active mode. The commands associated with the inspector mode and the user

mode are discussed shortly.

ExiL-The exit command stops execution, exits the Marple Inspector, and returns the user to the Lisp imerpreter. If

the Marple process is running when exit is selected, the process is killed.

18

The following descriptions concern commands that are associated with either the inspector or user mode.

Show Granh (i _nspector mode).-The show graph command draws a graphical representation of the internal structure

of a Marple model in the connection graph window as shown in figure 5. The shape and size of the connection graph is

automatically generated from the Marple model.

Restore Graph (inspector mode).-As mentioned earlier, in the description of the menu options for connection graph

nodes, the user can redisplay the connection graph starting from the selected node. The restore graph command simply
back steps the display of the connection graph to the previous display. Thus, if the user redisplays the connection graph

from variousnodes ina seriesof node selections,theusercan stepback throughthem inreverseorder.Iftheuserjust

wants to go back tothe originaldisplay of theconnectiongraph,theshow graph command describedabove should be
used instead.

Reset Graph (i_ mode).-Both the show graph and restore graph commands display the graph with the color

assignments made during the execution of Marple. The reset graph command displays the original form of the

connection graph, with all node colors set to appropriate behavior (i.e., grayish-white).

Graph Selection Default (inspector mode).-As mentioned eariior, when the mouse is used to select a node in the

connection graph, a menu of the following options is presemed to the user:

Redisplay graph from thisnode

Display connection values

Display node values

Display associated inputs

The graph selection default command allows the user to make one of these menu options the default operation for the

node selection. The chosen action is taken every time a node is selected instead of the menu appearing. Thus, node

values could be displayed in the information display window, or the associated input lines could be drawn each time a

node is selected. The graph selection default command also allows the user to have the menu appear each time the mouse
isclicked.

Clear Information Display 0n.mector mode).-The clear information display command clears the information display

window of any text, including text that has scrolled off the window. Note that this command appears only in the

inspector mode. The user mode does not have an information display window; however, the status window is expanded

to accommodate a friendlier presentation of Marple's stares during execution

Display Block Diamman (user mode).- The display block diagram command is used to display the block diagram

once the user enters user mode. As Marple runs, the block diagram is highlighted with various colors to indicate the

actions taken by the software.

Reset Block Diam'arn (user mode).-The reset block diagram command simply resets the color of the block diagram.

To help the user follow the execution of Marple, text displayed in the status window indicates which operations are

currently being performed, such as loading in a model. The main operationalloop of Marple consists of reading sensor

data, propagating sensor values throughout the model, and then checking for constraint violations. As Marple performs

these operations, the appropriate messages are displayed in the stares window. Also, the node color in the connection

graph will reflect any changes indicated in the status window. The status window informs the user when diagnostics is

19

initiated; from then on most text is displayed in yellow. The status window also presents the user with chronological time

stamps as Marple reads new data from the sensors.

FUTURE WORK

The initial component model design and network structure was intentionally simplified. In the future, enhanced

modeling techniques and structural information will be incorporated. Cknrently, work is continuing on abstracting the

model to a higher level, by exploiting the inherent stages of the test bed. This will result in a hierarchical relationship

being added to the network. Additionally, the structural relationships of tile RBI/RPC switching deviceswillalsobe

added. During the development, advanced modeling techniques will be studied and appropriate techniques applied.

Other issues under considea'ation include developing a hybrid system. The hybrid system will be a combination of the

Marple constraint-suspension system and fault modeling. The constraint-suspension system will be responsible for

isolating the component, or components, to the lowest level possible. The fault models will then be used to determine the

actual error of the suspect component, or components, responsible for the observed symptoms. Additional applications

where model-based diagnosis may be applied are also being investigated; system areas include space communications

and additional space power systems.

CONCLUDING REMARKS

The initial development of an autonomous electrical power distribution system started at NASA Lewis with an

integrated system containing an actual 20-kHz test bed, a diagnostic rule-based expert system, and a power resource

scheduler. To enhance the autonomous capabilities of such a system, we began to explore the paradigms of model-based

reasoning. The Marple software developed at TRW provided an environment where data propagation and constraint

suspension could be applied and leste_ As stated by Davis (ref. 3), model-based diagnostics is based on the idea that if

the model is correct, then any discrepancies can be amibuted to a fault in the system. We have found that model-based

reasoning has a lot to offer in the area of diagnosing unanticipated, and tbe_fore unexpected, fault conditions. The

Mmple inspector was developed to provide easy operation and control of the Marple software. This user inle_ace has

simplified the study of building and executing diagnostic models. From the lessons that we have learned, it is apparent

flint the models have to be constructed carefully. Frequently, investigating the reasons for misdiagnoses has led to errors

and deficiencies in the models. We are therefore endeavoring to become good model builders.

REFERENCES

1. Ringer, M.J., et al.: Lessons Learned from the Autonomous Power System. 27th Intersociety Energy Conversion

Engineexing Conference Proceedings (IECEC 1992), Society of Automotive Engineers, Inc., Warrendale, Michigan,

1992, vol. 1, pp. 171-176.

2. Fesq, L.; and McNamee, L.: Modeling Analog Systems for Diagnosis. Proceedings of the Third International Workshop

on Principles of Diagnosis (DX-92), Seattle, Washington, 1992.

3. Davis, R.; and Hamscher, W.: Model-based Reasoning: Troubleshooting. Exploring Artificial Intelligence, Morgan

Kanfmann; San Marco, California, 1988, pp. 297-345.

4. Davis, R.: Diagnostic Reasoning Based on Strucnm_ and Behavior. Artificai Intelligence, vol. 24, 1984, pp. 347-410.

20

5. Davis, R.: Re_-opective on "Diagnostic reasoning based on structure and behavior". Artifical Intelligence, vol. 59, 1993,

pp. 149-157.

6. Cowles, S.,et al.: Expert systems: Anew approachto spacecraft autonomy. TRW Space& Defense Quest, TRW, Redondo

Beach, California, 1990.

21

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for rev=ewing instructions, searcl_ing existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions 1or reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Higtlway, Suite 1204. Arlington, VA 22202-4302. and to the Office ot Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1994 Final Contractor Report

4. TITLE AND SUBTITLE

A Model-Based Expert System for Space Power Distribution Diagnostics

6. AUTHOR(S)

Todd M. Quinn and Richard F. Schlegelmilch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NYMA, Inc.
Engineering Services Division
2001 Aerospace Parkway
Brook Park, Ohio 44142

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

5. FUNDING NUMBERS

WU-233--03--04
C-NAS3-27186

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8879

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-195336

11. SUPPLEMENTARYNOTES

Project Manager, Edward J. Petrik, Space Electronics Division, NASA Lewis Research Center, organization code 5650,
(216) 433-3493.

12a.DISTRIBUTION/AVAILABlUTYSTATEMENT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced
a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for a
Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research
Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a
software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally,
constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for
applying this approach to analog systems as well, such as the test bed. The expert system was developed using Marple
and Lucid Common Lisp running on a Sun Spare-2 workstation. The Marple modeling environment has proved to be a
useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date
and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.

14. SUBJECT TERMS

Expert systems; Model-based reasoning

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

23
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std, Z39-18
298-102

